LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Combined effect of acoustic cavitation and pulsed discharge plasma on wastewater treatment efficiency in a circulating reactor: A case study of Rhodamine B.

Photo from wikipedia

The present study investigates the wastewater treatment performance of an acoustic cavitation assisted plasma (ACAP) process in a circulating reactor using Rhodamine B (RhB) as a model water pollution. The… Click to show full abstract

The present study investigates the wastewater treatment performance of an acoustic cavitation assisted plasma (ACAP) process in a circulating reactor using Rhodamine B (RhB) as a model water pollution. The concept of this process was proposed by the authors recently for a batch type rector. The measurements revealed that combining the ultrasound irradiation with pulsed discharge plasma allows the RhB degradation efficiency to be drastically increased as compared with the plasma-alone case. This effect is especially significant at higher values of solution electrical conductivity examined in a range of 20 ~ 400 μS/cm. Acidic conditions and larger flow rates of solution were found to be favorable for the degradation efficiency. The effect of flow rate was also analyzed through numerical simulation. The results indicated that the mass transfer of RhB to the plasma-cavitation zone is one of the controlling parameters influencing the degradation performance. Behavior of bubbles and pulse discharge frequency were examined using a high-speed video camera. Relatively large bubbles were found to favor the plasma pulse generation and propagation when move near the high-voltage electrode. On the whole, the results of this study suggest that the ACAP process has the potential to synergistically extend the application area of underwater plasma in both research and industry.

Keywords: plasma; cavitation; effect; wastewater treatment; acoustic cavitation; efficiency

Journal Title: Ultrasonics sonochemistry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.