LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Accelerated and long term stability study of Pfs25-EPA conjugates adjuvanted with Alhydrogel®.

Photo by aaronburden from unsplash

Pfs25, a Plasmodium falciparum surface protein expressed during zygote and ookinete stages in infected mosquitoes, is a lead transmission-blocking vaccine candidate against falciparum malaria. To enhance immunogenicity, recombinant Pfs25 was… Click to show full abstract

Pfs25, a Plasmodium falciparum surface protein expressed during zygote and ookinete stages in infected mosquitoes, is a lead transmission-blocking vaccine candidate against falciparum malaria. To enhance immunogenicity, recombinant Pfs25 was chemically conjugated to recombinant nontoxic Pseudomonas aeruginosa ExoProtein A (rEPA) in conformance with current good manufacturing practices (cGMP), and formulated with the alum adjuvant Alhydrogel. In order to meet the regulatory requirements for a phase 1 human clinical trial, the vaccine product was extensively evaluated for stability at an initial time point and through the clinical trial period annually. Because basic quality control methods to characterize alum-based vaccines remain unavailable, a thermal forced degradation study was performed prior to the initial evaluation to identify the methods suitable to detect the quality of vaccine formulations. Our results show that the vaccine product Pfs25-EPA formulated on Alhydrogel is in conformance with regulatory guidelines and suitable for human trials.

Keywords: accelerated long; long term; study; pfs25 epa; pfs25; stability

Journal Title: Vaccine
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.