Helicobacter pylori is a human class I carcinogen and no effective prophylactic or therapeutic H. pylori vaccine has yet been marketed. H. pylori can escape the host immune response, but… Click to show full abstract
Helicobacter pylori is a human class I carcinogen and no effective prophylactic or therapeutic H. pylori vaccine has yet been marketed. H. pylori can escape the host immune response, but the precise immune protection mechanisms in humans remain unknown. In this study, we developed a multivalent, subunit H. pylori vaccine candidate by formulating three commonly used H. pylori antigens, neutrophil-activating protein (NAP), urease subunit A (UreA) and subunit B (UreB) with the mucosal adjuvant, a double-mutant heat-labile toxin (dmLT) from Escherichia coli, and evaluated its immunogenicity and therapeutic efficacy in a mouse model of H. pylori infection. We found that oral immunization of H. pylori-infected mice significantly reduced gastric bacterial colonization at both 2 and 8 weeks after immunization. The reduction in bacterial burdens was accompanied with significantly increased serum antigen-specific IgG responses and mucosal IgA responses. Moreover, oral immunization also induced Th1/Th17 immune responses, which may play a synergistic role with the specific antibodies in the elimination of H. pylori. Thus, our vaccine candidate appears able to overcome the immune evasion mechanism of H. pylori, restore the suppression of Th2 immune responses with the induction of a strong humoral immune response. These results lay the foundation for the development of an optimized oral therapeutic H. pylori vaccine with increased immunogenicity of UreA and UreB, as well as providing long-term immunity.
               
Click one of the above tabs to view related content.