LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Trap assisted visible light luminescent properties of hydrothermally grown Gd doped ZnO nanostructures

Photo from wikipedia

Abstract Pristine ZnO and Gd-doped ZnO nanostructures were synthesized via the hydrothermal route to study the influence of Gd doping on the growth and properties of the nanostructures. Synthesized nanostructures… Click to show full abstract

Abstract Pristine ZnO and Gd-doped ZnO nanostructures were synthesized via the hydrothermal route to study the influence of Gd doping on the growth and properties of the nanostructures. Synthesized nanostructures were characterized by powder x-ray diffraction technique (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS) and UV–visible spectroscopy. Optical study demonstrated that the nanostructures exhibit good visible light transmittance and absorbs ultraviolet light energy. Photoluminescence (PL) study of the nanostructures showed that Gd-doping enhanced the PL activity of the nanostructures by possible introduction of the defect levels. The corresponding augmentation in PL intensity (visible light luminescent intensity) is attributed to comparative increase in crystallinity, complex defects (traps) and electron hole pair recombination rate. This enhanced luminescent property of Gd-doped ZnO nanostructures can be exploited for the luminescence based applications like sensors, UV-Lasers, phosphors, LEDs, luminescent biolabels, etc.

Keywords: microscopy; visible light; zno nanostructures; spectroscopy; light luminescent; doped zno

Journal Title: Vacuum
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.