INTRODUCTION Many cell types (including muscle cells and fibroblasts) can contract at physiological conditions and their contractility may change during tissue injury and repair or other diseases such as allergy… Click to show full abstract
INTRODUCTION Many cell types (including muscle cells and fibroblasts) can contract at physiological conditions and their contractility may change during tissue injury and repair or other diseases such as allergy and asthma. The conventional gel contraction assay is commonly used to monitor the cellular contractility. It is a manual assay and the experiment usually takes hours even days to complete. As its readout is not always accurate and reliable, the gel contraction assay is often used to qualitatively (but not quantitatively) characterize cellular contractility under various conditions. METHOD To overcome the limits of the gel contraction assay, we developed an impedance-based contraction assay using the xCELLigence RTCA MP system. This technology utilizes special 96-well E-plates with gold microelectrode arrays printed in individual wells to monitor cellular adhesion by recording the electrical impedance in real time. The impedance change (percentage vs. control) can be used as the readout for cellular contraction. RESULTS We demonstrated that the impedance-based contraction assay can be performed within 2h. Using this new method, we quantitatively characterized the effects of several contractile stimulators and inhibitors on human primary bronchial smooth muscle cells and primary lung fibroblasts. DISCUSSION The impedance-based contraction assay can be applied to both basic research and drug discovery for characterizing cellular contraction quantitatively. Because it has high throughput capacity and high reproducibility, the impedance-based contraction assay is useful for high throughput functional screening in drug industry.
               
Click one of the above tabs to view related content.