Two internationally recognised and standardised genotyping methods, mycobacterial interspersed repetitive unit and variable number tandem repeat analysis (MIRU-VNTR) and spoligotyping, were applied to characterise genetic variations among 137 Mycobacterium bovis… Click to show full abstract
Two internationally recognised and standardised genotyping methods, mycobacterial interspersed repetitive unit and variable number tandem repeat analysis (MIRU-VNTR) and spoligotyping, were applied to characterise genetic variations among 137 Mycobacterium bovis isolates recovered from Canadian domestic and wild animals during 1985-2015. Spoligotyping generated seven types that were discriminated further into12 MIRU-VNTR types. The discriminatory power indexes were estimated as 0.71 and 0.77 for spoligotyping and MIRU-VNTR typing approaches, respectively. In total, 6 prominent clusters of isolates were observed by the genotyping schemes. Four genotype clusters were exclusively observed in farmed animals. Three of these four clusters were affiliated with localised tuberculosis outbreaks, and each cluster corresponded to a single specific spoligotype (SB0140, SB0673, and SB1069) and a MIRU-VNTR profile. The fourth genotype cluster, with spoligotype SB0265 which segregated into two MIRU-VNTR types, was associated with bovine tuberculosis outbreaks in several farms across Canada during 1990-2002. Two genotype clusters of M. bovis stains were associated with wildlife reservoirs: a spoligotype SB0130 with 3 unique MIRU-VNTR profiles were observed in wood bison in Wood Buffalo National Park, and unique spoligotypes SB1070 and 1071 represented by four MIRU-VNTR profiles were recovered from cervidae species in and around the Riding Mountain National Park of Manitoba. Genotyping data confirmed M. bovis transmission between wildlife and livestock in Manitoba in 1990-2008. Overall, notwithstanding the low level of genetic diversity of Canadian M. bovis strains, the spoligotyping and MIRU-VNTR typing were useful tools in monitoring transmission of endemic strains and defining new introductions to Canada. The majority of genotypes were most likely introduced into domestic animals through live animal trade, and subsequently eliminated as a result of bovine tuberculosis outbreak investigation and eradication activities.
               
Click one of the above tabs to view related content.