Salmonella enterica Subsp enterica serovar Typhimurium (S. Typhimurium, ST) is one of the most important serovars of the genus Salmonella in human and animals. Because of its intracellular tropism, monocytes/macrophages… Click to show full abstract
Salmonella enterica Subsp enterica serovar Typhimurium (S. Typhimurium, ST) is one of the most important serovars of the genus Salmonella in human and animals. Because of its intracellular tropism, monocytes/macrophages are pivotal in killing of Salmonella serovars; they are also responsible for transporting of ST to extra-intestinal organs. To investigate the effect of the ST on the functions of avian innate immune cells, almost homogeneous enriched monocytes (EMo) were isolated from peripheral blood mononuclear cells of 2-3 weeks-old of healthy broilers. The EMo were then divided in three groups: control (media only), treatments (challenged with ST clinical isolates) and [doxorubicin (Dox), specifically as positive control for EMo apoptosis] groups. Cellular-molecular damage caused by ST in EMo was assessed with bioluminescence (for caspase-3, 7, and 9 activities and intracellular ATP content), chemiluminescence (for pro/anti-oxidant capacities) and flow cytometry (for apoptosis/necrosis). Further, phagocytosis capacity of post-ST challenged EMo was assessed using a flow cytometry-based internalisation of FITC-loaded polystyrene microparticles. Like the effects of Dox, in post-ST challenged EMo much higher caspase-3, 7 and 9 activities and ATP depletion along with decreased phagocytosis capacity and anti-oxidant load were observed. The results herein indicate that ST weakens EMo particularly through caspases activation/apoptosis. These findings can open a new window on the molecular aspects of Salmonella-macrophage interactions and immunopathology/pathogenicity of salmonellosis in animals especially avian species.
               
Click one of the above tabs to view related content.