LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Targeted mutagenesis of Mycoplasma gallisepticum using its endogenous CRISPR/Cas system.

Photo by anniespratt from unsplash

New, more efficient methods are needed to facilitate studies of gene function in the mycoplasmas. CRISPR/Cas systems, which provide bacteria with acquired immunity against invading nucleic acids, have been developed… Click to show full abstract

New, more efficient methods are needed to facilitate studies of gene function in the mycoplasmas. CRISPR/Cas systems, which provide bacteria with acquired immunity against invading nucleic acids, have been developed as tools for genomic editing in a wide range of organisms. We explored the potential for using the endogenous Mycoplasma gallisepticum CRISPR/Cas system to introduce targeted mutations into the chromosome of this important animal pathogen. Three constructs carrying different CRISPR arrays targeting regions in the ksgA gene (pK1-CRISPR, pK-CRISPR-1 and pK-CRISPR-2) were assembled and introduced into M. gallisepticum on an oriC plasmid. The loss of KsgA prevents ribosomal methylation, which in turn confers resistance to the aminoglycoside antimicrobial kasugamycin, enabling selection for ksgA mutants. Analyses of the complete sequence of the ksgA gene in 78 resistant transformants revealed various modifications of the target region, presumably caused by the directed CRISPR/Cas activity of M. gallisepticum. The analyses suggested that M. gallisepticum may utilize a non-homologous end joining (NHEJ) repair system, which can result in deletion or duplication of a short DNA segment in the presence of double-stranded breaks. This study has generated an improved understanding of the M. gallisepticum CRISPR/Cas system, and may also facilitate further development of tools to genetically modify this important pathogen.

Keywords: crispr cas; gallisepticum; crispr; cas system

Journal Title: Veterinary microbiology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.