LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Heme Oxygenase-1 suppresses duck Tembusu virus replication in vitro.

Photo by philldane from unsplash

Heme Oxygenase-1 (HO-1) is a ubiquitously expressed enzyme which plays important functions in antioxidant, anti-inflammatory and anti-apoptosis. Recent studies have demonstrated that HO-1 also has significant antiviral properties, inhibiting the… Click to show full abstract

Heme Oxygenase-1 (HO-1) is a ubiquitously expressed enzyme which plays important functions in antioxidant, anti-inflammatory and anti-apoptosis. Recent studies have demonstrated that HO-1 also has significant antiviral properties, inhibiting the replication of some kinds of viruses such as human immunodeficiency virus (HIV), hepatitis C virus (HCV), and dengue fever virus (DFV). In this study, we evaluated the role of HO-1 in Duck Tembusu virus (DTMUV) replication in vitro. The results showed that, the mRNA expression level of HO-1 was transient up-regulated and then significantly decreased in duck embryo fibroblast (DEF) infected with DTMUV. HO-1 induction by transfection of HO-1 over-expression plasmid or treatment with cobalt protoporphyrin (CoPP), a potent HO-1 inducer, could inhibit DTMUV replication effectively. In contrast, HO-1 siRNA knockdown in DEF increased DTMUV replication, implied that HO-1 was an important cellular factor against DTMUV replication. Furthermore, we found that ferric ion (Fe3+) but not biliverdin and carbon monoxide, products of heme degradation by HO-1, mediated the HO-1-induced anti-DTMUV effect. Overall, these finding revealed that a drug induced the HO-1 signal pathway was a promising strategy for treating DTMUV infection.

Keywords: dtmuv replication; duck tembusu; tembusu virus; heme oxygenase; replication; virus

Journal Title: Veterinary microbiology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.