LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Surface enhanced Raman spectroscopy and cultural heritage biodeterioration: Fungi identification in earthen architecture from Paraíba Valley (São Paulo, Brazil)

Photo by joakimnadell from unsplash

Abstract In this work, Surface Enhanced Raman Spectroscopy (SERS) was employed in the taxonomic identification of fungi found in biofilms formed on earthen architecture walls (adobe, wattle and daub, and… Click to show full abstract

Abstract In this work, Surface Enhanced Raman Spectroscopy (SERS) was employed in the taxonomic identification of fungi found in biofilms formed on earthen architecture walls (adobe, wattle and daub, and rammed earth) of historical buildings in the region known as Paraiba Valley (or Sao Paulo Historical Valley), which are representative of the first phase of the Brazilian coffee cycle (1820–1880). Very few studies are reported in the literature where SERS-based techniques are used in fungi identification, most of them focused on clinical diagnosis. In the present investigation, pure colonies isolated from biofilms on earthen walls previously identified by classic taxonomy and molecular biology were selected. The genera were Trichoderma, Cladosporium, Aspergillus, Neurospora, Fusarium and Penicillium. The fungi were cultured on solid potato dextrose agar, extracted with ethyl acetate and the extracts were applied on dried Au nanoparticles. The SERS spectra exhibited bands in the 600–1800 cm−1 region which are characteristic of each genus, except Penicillium, as revealed by PCA statistical analysis. This work reports the use of a facile to prepare SERS-active substrate in the identification of microbial communities on earthen architecture walls and is the first step of an investigation aiming at the fast identification of fungi species from biofilms formed on earthen architecture buildings without the need of isolating the pure cultures.

Keywords: surface enhanced; earthen architecture; spectroscopy; valley; identification

Journal Title: Vibrational Spectroscopy
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.