LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evolutionary conservation of influenza A PB2 sequences reveals potential target sites for small molecule inhibitors.

Photo from archive.org

The influenza A basic polymerase protein 2 (PB2) functions as part of a heterotrimer to replicate the viral RNA genome. To investigate novel PB2 antiviral target sites, this work identified… Click to show full abstract

The influenza A basic polymerase protein 2 (PB2) functions as part of a heterotrimer to replicate the viral RNA genome. To investigate novel PB2 antiviral target sites, this work identified evolutionary conserved regions across the PB2 protein sequence amongst all sub-types and hosts, as well as ligand binding hot spots which overlap with highly conserved areas. Fifteen binding sites were predicted in different PB2 domains; some of which reside in areas of unknown function. Virtual screening of ~50,000 drug-like compounds showed binding affinities of up to -10.3kcal/mol. The highest affinity molecules were found to interact with conserved residues including Gln138, Gly222, Ile529, Asn540 and Thr530. A library containing 1738 FDA approved drugs was screened additionally and revealed Paliperidone as a top hit with a binding affinity of -10kcal/mol. Predicted ligands are ideal leads for new antivirals as they were targeted to evolutionary conserved binding sites.

Keywords: evolutionary conservation; pb2; target sites; conservation influenza

Journal Title: Virology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.