LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Molecular evolution and selection pressure analysis of infectious hematopoietic necrosis virus (IHNV) revealed the origin and phylogenetic relationship of Iranian isolates in recent epidemics in Iran.

Photo by arash_payam from unsplash

Infectious hematopoietic necrosis virus (IHNV) is the causative agent for a lethal salmonid disease. In this study, we surveyed the IHNV's epidemiology, diversity and the origin of infection in Iran.… Click to show full abstract

Infectious hematopoietic necrosis virus (IHNV) is the causative agent for a lethal salmonid disease. In this study, we surveyed the IHNV's epidemiology, diversity and the origin of infection in Iran. Phylogenetic analysis revealed that Iranian isolates belonged to one of the two lineages of E genogroup. Subsequently, a combination of phylogenetic, antigenic and structural analysis was performed to investigate the evolution of E genogroup lineages. Site-specific analysis of the viral glycoprotein showed different co-evolving and positively selected sites in each lineage. Most of these sites were mapped to the predicted antigenic patches of the glycoprotein. Further characterization revealed E lineages can be differentiated, in part, by specific mutations at positions 91 and 130, which are located in the structurally flexible regions of the glycoprotein, suggesting a key adaptative role for these sites. These data may assist in better monitoring the emerging isolates in regions infected to IHNV from E genogroup.

Keywords: iranian isolates; necrosis virus; virus ihnv; hematopoietic necrosis; analysis; infectious hematopoietic

Journal Title: Virology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.