LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Antiviral efficiency of a coumarin derivative on spring viremia of carp virus in vivo.

Photo by raddfilms from unsplash

Spring viraemia of carp (SVC) in aquaculture is challenging because there are few preventative measures and/or treatments. The previous study demonstrated that an antiviral coumarin derivative, 7-(4-(4-methyl-imidazole))-coumarin (C2), inhibits spring… Click to show full abstract

Spring viraemia of carp (SVC) in aquaculture is challenging because there are few preventative measures and/or treatments. The previous study demonstrated that an antiviral coumarin derivative, 7-(4-(4-methyl-imidazole))-coumarin (C2), inhibits spring viremia of carp virus (SVCV) infection by targeting Nrf2-ARE signaling pathway in fish cells. Thus, we hypothesized whether C2 may be used as a potential therapeutic agent for controlling SVCV infection in aquaculture. In this study, SVCV infectivity was significantly inhibited in vitro in a dose-dependent manner by preincubation with C2. C2 was verified against SVCV in zebrafish, in which the mortality and viral titer in fish body were decreased. Like other coumarins, C2 was stable with a prolonged inhibitory half-life (3.5 days) at 15 °C in the early stage of SVCV infection. The results show that horizontal transmission of SVCV was reduced by C2 in a static cohabitation challenge model, especially for recipient fish in injection treatment, which suggested that C2 may be suitable as a possible therapeutic agent for SVCV in aquaculture. Overall, this study provides the new insight that a small molecule antiviral drug can be used to control rhabdovirus infection in fish aquacultures.

Keywords: coumarin derivative; spring viremia; spring; viremia carp; carp

Journal Title: Virus research
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.