LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Crowding reveals fundamental differences in local vs. global processing in humans and machines

Photo by paipai90 from unsplash

Feedforward Convolutional Neural Networks (ffCNNs) have become state-of-the-art models both in computer vision and neuroscience. However, human-like performance of ffCNNs does not necessarily imply human-like computations. Previous studies have suggested… Click to show full abstract

Feedforward Convolutional Neural Networks (ffCNNs) have become state-of-the-art models both in computer vision and neuroscience. However, human-like performance of ffCNNs does not necessarily imply human-like computations. Previous studies have suggested that current ffCNNs do not make use of global shape information. However, it is currently unclear whether this reflects fundamental differences between ffCNN and human processing or is merely an artefact of how ffCNNs are trained. Here, we use visual crowding as a well-controlled, specific probe to test global shape computations. Our results provide evidence that ffCNNs cannot produce human-like global shape computations for principled architectural reasons. We lay out approaches that may address shortcomings of ffCNNs to provide better models of the human visual system.

Keywords: fundamental differences; processing; human like; global shape; reveals fundamental; crowding reveals

Journal Title: Vision Research
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.