Abstract The summers of 2018 and 2019 were characterized by unusually warm conditions over Europe. Here, we describe the intense heatwaves striking the Iberian Peninsula in early August 2018 and… Click to show full abstract
Abstract The summers of 2018 and 2019 were characterized by unusually warm conditions over Europe. Here, we describe the intense heatwaves striking the Iberian Peninsula in early August 2018 and late June 2019. The 2018 episode was relatively short-lived but outstanding in amplitude, particularly in western Iberia. Similar to previous mega-heatwaves, the 2019 event was long-lasting and affected large areas of western and central Europe, including eastern Iberia. During these events, many absolute temperature records were broken in western and eastern Iberia, respectively (some of them standing since 2003). In both cases, a cyclonic circulation off the coast in the northeastern Atlantic and a strong subtropical ridge pattern over the affected area promoted the advection of an anomalously warm air mass. This paper highlights the role of these very warm, stable and dry air intrusions of Saharan origin in the western and eastern Iberia heatwave events. Using a thermodynamical classification based on the geopotential height thickness and potential temperature, we show how the magnitude and poleward extension of these Saharan intrusions were unprecedented in the period since 1948. The relationship between Iberian heatwaves and Saharan warm air intrusions is discussed in the long-term context, showing a closer link in southern sectors of the Peninsula. However, a consistent poleward trend in the latitudinal extension of these subtropical intrusions reveals their increasing relevance for heatwaves in northern sectors of Iberia and western Europe. This overall trend is accompanied by an apparent “see-saw” in the occurrence of subtropical intrusions between eastern and western Iberia on multi-decadal scales.
               
Click one of the above tabs to view related content.