LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nano-carbons from waste tyre rubber: An insight into structure and morphology.

Photo from wikipedia

This study reports on the novel and sustainable synthesis of high value carbon nanoparticles (CNPs) from waste tyre rubber (WTR), using an innovative high temperature approach. As waste tyres are… Click to show full abstract

This study reports on the novel and sustainable synthesis of high value carbon nanoparticles (CNPs) from waste tyre rubber (WTR), using an innovative high temperature approach. As waste tyres are composed, primarily, of carbon - accounting for some 81.2wt% - they represent a promising source of carbon for many potential applications. However, cost-effective options for their processing are limited and, consequently, billions of waste tyres have accumulated in landfills and stockpiles, posing a serious global environmental threat. The rapid, high temperature transformation of low value WTR to produce valuable CNPs, reported here, addresses this challenge. In this study, the transformation of WTRs was carried out at 1550°C over different reaction times (5s to 20min). The structure and morphology of the resulting CNPs were investigated using X-ray diffraction (XRD), Raman spectroscopy, X-ray photon spectroscopy (XPS), N2 isothermal adsorption method and scanning electron microscopy (SEM). The formation of CNPs with diameters of 30 and 40nm was confirmed by Field Emission Electron Microscopy (FE-SEM). Longer heating times also resulted in CNPs with regular and uniform spherical shapes and a specific surface area of up to 117.7m2/g, after 20min. A mechanism that describes the formation of CNPs through mesophase nuclei intermediate is suggested.

Keywords: microscopy; structure morphology; tyre rubber; spectroscopy; waste tyre

Journal Title: Waste management
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.