LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optimization of the integral valorization process for orange peel waste using a design of experiments approach: Production of high-quality pectin and activated carbon.

Photo from wikipedia

The aim of this study was to optimize the integral valorization of orange peel waste by obtaining activated carbon after a process of pectin recovery in recycling of orange peel… Click to show full abstract

The aim of this study was to optimize the integral valorization of orange peel waste by obtaining activated carbon after a process of pectin recovery in recycling of orange peel by transformation to value-added products of pectin extraction and activated carbon preparation. The study was supported by statistical analysis, and the significant factors and optimal conditions were obtained from the statistical analysis. Using a representative sample of orange peel waste, a yield of 29.37% pectin was recovered at the optimal operating conditions (phosphoric acid as the extraction agent, 95 °C as the impregnation temperature and a 2-hour extraction time). Activated carbon (AC) was prepared from the remaining solid residue. The conditions that improve the resulting material quality were H3PO4 [0.6 M] used as the activating agent, an impregnation temperature of 95 °C, a carbonization temperature of 400 °C and 1 h of carbonization time. The obtained AC showed a sorption capacity of 2342.91 mg g-1, a value higher than that reported for commercial activated carbon. Using a model dye chemical, the sorption kinetics and thermodynamics of AC were found to follow a pseudo-second-order rate and the Freundlich models, respectively. Using the process conditions obtained in this study, it was possible to optimize the yield and also obtain good-quality products from valorization of orange peel.

Keywords: peel waste; activated carbon; orange peel

Journal Title: Waste management
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.