LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structure and thermal properties of various alcoholysis products from waste poly(ethylene terephthalate).

Photo from wikipedia

Waste polyethylene terephthalate (PET) has been a core member in plastic polluters due to the great amount consumption in food packaging, soft-drink bottles, fibers and films. It is essential to… Click to show full abstract

Waste polyethylene terephthalate (PET) has been a core member in plastic polluters due to the great amount consumption in food packaging, soft-drink bottles, fibers and films. It is essential to recycle waste PET and alcoholysis is a significant way to accomplish chemical recycling. In this work, three kinds of dihydric alcohols, including neopentyl glycol (NPG), dipropylene glycol (DPG) and poly(propylene glycol) (PPG), were employed to decompose waste PET with different temperatures, catalysts, and PET. A series of alcoholysis products with different appearance were obtained. The bulk structure and thermal properties of alcoholysis products were investigated by FTIR, 1H NMR, MALDI-TOF, DSC and TG experiments. It is found that poly(propylene glycol) may react with waste PET to generate copolymer instead of oligomer products, dimers or trimers, etc. This product possesses excellent shelf stability and present transparent appearance, which may hold a great potential application in chemical industry. Moreover, the alcoholysis activity of DPG is the lowest comparing with NPG and EG in degradation of waste PET.

Keywords: structure thermal; alcoholysis products; alcoholysis; waste; waste pet; thermal properties

Journal Title: Waste management
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.