LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evaluation of mixing ratio and frequency of turning in the co-composting of biowaste with sugarcane filter cake and star grass.

Photo from wikipedia

This work studied the effect of mixing ratio (MR) and turning frequency (TF) in biowaste composting (BW) with sugarcane filter cake (SFC) and star grass (SG), both on process performance… Click to show full abstract

This work studied the effect of mixing ratio (MR) and turning frequency (TF) in biowaste composting (BW) with sugarcane filter cake (SFC) and star grass (SG), both on process performance (temperature, static respiration index, total organic carbon, total nitrogen and total phosphorus) and on product quality (pH, cation exchange capacity, electrical conductivity, organic matter, nutrients, stability, maturity, total coliforms and faecal coliforms), through the Principal Components Analysis (PCA). The Pearson correlation coefficients were calculated for all the quality parameters. A joint effect of mixing ratio and turning frequency was demonstrated, highlighting the importance of studying the operational parameters simultaneously. The results of the PCA showed that the best operating conditions and therefore higher product quality is achieved with a TF of twice a week and MR between 20 and 30% of SFC or SG. Additionally, it was found that a frequency of one turn per week generates the lowest product quality, regardless the co-substrate and the MR. The best treatment corresponded to BW composting with MR of 20% SFC and TF of two turnings per week. The obtained results allow to optimize the operation in composting facilities.

Keywords: sugarcane filter; filter cake; mixing ratio; frequency; star grass; biowaste

Journal Title: Waste management
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.