Pretreatment processes substantially modify the organic composition of landfill leachate, which affect the fouling behavior in the post-treatment of membrane filtration. In this study, the changes in the chemical composition… Click to show full abstract
Pretreatment processes substantially modify the organic composition of landfill leachate, which affect the fouling behavior in the post-treatment of membrane filtration. In this study, the changes in the chemical composition of stabilized landfill leachate upon various pretreatments, which encompassed coagulation/flocculation (C/F), ion exchange resins (MIEX), granular activated carbon (GAC) adsorption, and their combinations, were tracked via excitation emission matrix - parallel factor analysis (EEM-PARAFAC), and the membrane fouling potentials were assessed in the subsequent processes of nanofiltration (NF). Fluorescence components, fulvic-like (C1), protein-like (C2), and humic-like (C3), were identified and validated using EEM-PARAFAC. MIEX and C/F pretreatments were not effective to remove C1 and C2, which were associated with relatively small sized and hydrophilic molecules. GAC adsorption did not show any preference with the removal towards different components. These differences in the chemical heterogeneity among the variously pretreated leachates led to the discrepancies in membrane fluxes at a similar leachate concentration. The result also signified the importance of probing the chemical composition of pretreated leachate for the optimization of the post membrane filtration. The sum of C2 and C3 in the pretreated leachate showed a good correlation with reversible membrane fouling resistance (r = 0.93; p < 0.05), while C1 was highly correlated with irreversible membrane resistance (r = 0.872; P < 0.05). These findings provided a new insight into the applicability of fluorescence spectroscopy for tracking the changes in the membrane fouling potential of stabilized landfill leachate after various pretreatments.
               
Click one of the above tabs to view related content.