In order to reduce the environmental and financial burden for future generations, approaches are needed to shorten aftercare of landfills. Aeration of the waste-body is a promising approach, however, the… Click to show full abstract
In order to reduce the environmental and financial burden for future generations, approaches are needed to shorten aftercare of landfills. Aeration of the waste-body is a promising approach, however, the poor understanding of transport of gas and water through a waste-body makes it difficult to design an effective aeration strategy. The aim of this study is to develop a tool to determine the optimal aeration strategy for landfills. This study presents a comparison of aeration strategies based on the air distribution they generate with a 3-D multiphase model. The implemented theory is based on parameter values obtained from (laboratory) experiments performed under conditions which are similar to those in a full scale landfill. Calibration with field scale gas extraction data from the Dutch pilot site Wieringermeer shows that the model gives a good description of the average gas flow under extraction. Scenario analyses for the case study landfill indicate that injection strategies reach a larger volume fraction of waste with a higher air flow compared with extraction strategies, especially at the bottom of the landfill. Extraction, however, supplies oxygen more homogeneously through-out the waste. An import design criterion is also the distance between the wells. Too large distances lead to ineffective treatment because too large volumes of waste/leachate remain untreated. In addition to the comparison of aeration strategies, an optimal aeration strategy for the pilot site is presented. A combination of (alternating) injection and extraction wells which are maximum 20m apart seems to be the optimal strategy.
               
Click one of the above tabs to view related content.