In this study, a chemical milling process is developed to convert carbon residues from pyrolyzed waste tires into valuable water-based inkjet printing inks. The residues after waste tire pyrolysis were… Click to show full abstract
In this study, a chemical milling process is developed to convert carbon residues from pyrolyzed waste tires into valuable water-based inkjet printing inks. The residues after waste tire pyrolysis were first sieved to remove ash components and ground into powder (~80 μm). The resulting waste tire carbon blacks (TCB) processed by regular dry or wet milling with the help of compatible solvent can only produce particle sizes around 250 nm. To further reduce particle size under the same mechanical energy, aqueous potassium hydroxide was used in the milling process to leach silica in TCB to create loose and vulnerable structure. Moreover, an ionic surfactant, poly (sodium 4-styrenesulfonate) (PSS), was used to decorate the TCB surface and to inhibit particle aggregation. After chemical milling, the PSS/TCB had a primary particle size around 50 nm and a hydraulic diameter around 110 nm. The PSS/TCB suspension possessed a high zeta potential of -73 mV to stably disperse in water for more than 30 days. To help adhesion of the ink on substrates, the PSS/TCB particles were further mixed with waterborne polyurethane (WPU). The WPU/PSS/TCB ink could be inkjet printed into various black patterns, which showed a higher blackness (jetness value = 342.83) than commercial black inks. Moreover, the printed patterns were water-proof and had a pencil scratch hardness of 4H. In summary, this study provides a guideline to convert waste carbon materials into useful printing supplies, and offers a potential application for waste tire recycling.
               
Click one of the above tabs to view related content.