LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microbial electrochemical nutrient recovery in anaerobic osmotic membrane bioreactors.

Photo from archive.org

This study demonstrates that by incorporating a microbial electrochemical unit into an anaerobic osmotic membrane bioreactor (AnOMBR), the system addressed several challenges faced by traditional anaerobic membrane bioreactors and recovered… Click to show full abstract

This study demonstrates that by incorporating a microbial electrochemical unit into an anaerobic osmotic membrane bioreactor (AnOMBR), the system addressed several challenges faced by traditional anaerobic membrane bioreactors and recovered biogas, nitrogen, and phosphorus while maintaining high effluent quality with low dissolved methane. The microbial recovery cell (MRC)-AnOMBR system showed excellent organic (>93%) and phosphorus removal (>99%) and maintained effluent COD below 20 mg/L. Furthermore, the reactor effectively recovered up to 65% PO43- and 45% NH4+ from the influent, which can be further improved if membranes with higher selectivity are used. Nutrients removal from bulk solution mitigated NH4+ penetration to the draw solution and reduced scaling potential caused by PO43-. The maximum methane yield was 0.19 L CH4/g COD, and low methane (<2.5 mL CH4/L) was detected in the effluent. Further improvement can be made by increasing charge efficiency for better nutrient and energy recovery.

Keywords: recovery; osmotic membrane; anaerobic osmotic; membrane bioreactors; microbial electrochemical; membrane

Journal Title: Water research
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.