LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Physicochemical transformation of Fe/Ni bimetallic nanoparticles during aging in simulated groundwater and the consequent effect on contaminant removal.

Photo from wikipedia

To assess the fate and long-term reactivity of bimetallic nanoparticles used in groundwater remediation, it is important to trace the physicochemical transformation of nanoparticles during aging in water. This study… Click to show full abstract

To assess the fate and long-term reactivity of bimetallic nanoparticles used in groundwater remediation, it is important to trace the physicochemical transformation of nanoparticles during aging in water. This study investigated the short-term (within 5 d) and long-term (up to 90 d) aging process of Fe/Ni bimetallic nanoparticles (Fe/Ni BNPs) in simulated groundwater and the consequent effect on the particle reactivity. Results indicate that the morphological, compositional and structural transformation of Fe/Ni BNPs happened during the aging. In the 5-d short-term aging, Fe0 corrosion occurred rapidly and was transformed to ferrous ions which were adsorbed onto the surface of Fe/Ni BNPs, accompanied by the elevation of solution pH and the negative redox potential. In the long-term aging, scanning electron microscopy (SEM) images show that the particles transformed from spherical to rod-like and further to sheet-like and needle-like. X-ray diffraction (XRD) analysis reveals that the main aging product was magnetite (Fe3O4) and/or maghemite (γ-Fe2O3) after aging for 60-90 d. Energy dispersive spectrometer (EDS) analysis demonstrates that the mass ratio of Fe/Ni increased with aging, revealing that Ni were possibly gradually entrapped and covered by the iron oxides. Besides, the release of Ni into solution was also detected during the aging. The reactivity of the aged Fe/Ni BNPs was examined by studying its performance in tetracycline (TC) removal. The aged Fe/Ni BNPs within 2 d kept similar removal efficiency of TC as the fresh particles. However, the removal efficiency of TC by Fe/Ni BNPs aged for 5-15 d dropped by 20-50% due to aggregation and oxidation of particles, and the removal efficiency further decreased slowly with the prolongation of aging time up to 90 d. This reveals that Fe/Ni BNPs were vulnerable to passivation in water environments.

Keywords: term; removal; bimetallic nanoparticles; nanoparticles aging; physicochemical transformation

Journal Title: Water research
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.