LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Field performance of two biofiltration systems treating micropollutants from road runoff.

Photo from wikipedia

The treatment efficiency of a vegetative filter strip and a biofiltration swale treating heavily loaded road runoff are evaluated. Concentrations measured in water drained from the two systems are compared… Click to show full abstract

The treatment efficiency of a vegetative filter strip and a biofiltration swale treating heavily loaded road runoff are evaluated. Concentrations measured in water drained from the two systems are compared to those in untreated road runoff collected from a reference catchment for a wide range of contaminants including organic carbon, nutrients (N and P), trace metals, and organic micropollutants (polycyclic aromatic hydrocarbons (PAH), total petroleum hydrocarbons (TPH), alkylphenols, bisphenol-A, phthalates), in both total and dissolved phases. Predominantly particulate pollutants, including Pb, Zn and PAH, were very efficiently removed (around 90%) for most events. However, poor particulate removal was observed during a winter period. Relatively few pollutants were significantly removed in the dissolved phase and observed concentration reductions tended to be lower than those of suspended solids and associated pollutants; as such, lower removals were observed for total concentrations of moderately particulate micropollutants, including bisphenol-A, alkylphenols and phthalates. In addition, some pollutants appear to be emitted from various biofilter components (filter media, drainage and lining materials), as low or negative concentration removals were observed during the first months of operation of the biofiltration swale.

Keywords: performance two; field performance; road runoff; biofiltration

Journal Title: Water research
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.