A scale-up procedure was assessed in this study to predict the fixed bed adsorption behaviors with aging granular activated carbon (GAC) for various micropollutants (pesticides, pharmaceuticals). Two assumptions of this… Click to show full abstract
A scale-up procedure was assessed in this study to predict the fixed bed adsorption behaviors with aging granular activated carbon (GAC) for various micropollutants (pesticides, pharmaceuticals). Two assumptions of this upscaling methodology (i.e., involving equal adsorption capacities and surface diffusivities between the batch test and the fixed bed) were studied for the first time to investigate the aging effect on the adsorption capacity and kinetics of carbon at full scale. This study was conducted in natural waters (the Seine River) treated by Veolia Eau d'Ile de France in Choisy-Le-Roi, a division of Syndicat des Eaux d'Ile de France, aiming to monitor real industrial conditions. The isotherms showed that the adsorption capacity for most compounds was significantly affected by aging. For the mass transfer coefficients (i.e., as determined by the homogeneous surface diffusion model (HSDM)), different patterns of adsorbate/adsorbent behaviors were observed, suggesting different competition mechanisms. The model predictions (i.e., HSDM) performed with all parameters obtained during the batch tests tended to overestimate the full-scale pilot adsorption performance. This overestimation could be compensated for by applying a scaling factor. Finally, an empirical pseudo-first order function was used to model the impact of the GAC service time on the characteristic adsorption parameters. Thus, our scale-up procedure may enable the prediction of long-term fixed bed adsorption behaviors and increase the model efficiency for practical implementation.
               
Click one of the above tabs to view related content.