LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Expanding the application of photoelectro-Fenton treatment to urban wastewater using the Fe(III)-EDDS complex.

Photo from wikipedia

This work reports the first investigation on the use of EDDS as chelating agent in photoelectro-Fenton (PEF) treatment of water at near-neutral pH. As a case study, the removal of… Click to show full abstract

This work reports the first investigation on the use of EDDS as chelating agent in photoelectro-Fenton (PEF) treatment of water at near-neutral pH. As a case study, the removal of the antidepressant fluoxetine was optimized, using an electrochemical cell composed of an IrO2-based anode an air-diffusion cathode for in-situ H2O2 production. Electrolytic trials at constant current were made in ultrapure water with different electrolytes, as well as in urban wastewater (secondary effluent) at pH 7.2. PEF with Fe(III)-EDDS (1:1) complex as catalyst outperformed electro-Fenton and PEF processes with uncomplexed Fe(II) or Fe(III). This can be explained by: (i) the larger solubilization of iron ions during the trials, favoring the production of •OH from Fenton-like reactions between H2O2 and Fe(II)-EDDS or Fe(III)-EDDS, and (ii) the occurrence of Fe(II) regeneration from Fe(III)-EDDS photoreduction, which was more efficient than conventional photo-Fenton reaction with uncomplexed Fe(III). The greatest drug concentration decays were achieved at low pH, using only 0.10 mM Fe(III)-EDDS, although complete removal in wastewater was feasible only with 0.20 mM Fe(III)-EDDS due to the greater formation of •OH. The effect of the applied current and anode nature was rather insignificant. A progressive destruction of the catalytic complex was unveiled, whereupon the mineralization mainly progressed thanks to the action of •OH adsorbed on the anode surface. Despite the incomplete mineralization using BDD as the anode, a remarkable toxicity decrease was determined. Fluoxetine degradation yielded F- and NO3- ions, along with several aromatic intermediates. These included two chloro-organics, as a result of the anodic oxidation of Cl- to active chlorine. A detailed mechanism for the Fe(III)-EDDS-catalyzed PEF treatment of fluoxetine in urban wastewater is finally proposed.

Keywords: fenton; treatment; urban wastewater; iii edds

Journal Title: Water research
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.