LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evaluation of the integration of P recovery, polyhydroxyalkanoate production and short cut nitrogen removal in a mainstream wastewater treatment process.

Wastewater treatment systems are nowadays evolving into systems where energy and resources are recovered from wastewater. This work presents the long term operation of a demo-scale pilot plant (7.8 m3) with… Click to show full abstract

Wastewater treatment systems are nowadays evolving into systems where energy and resources are recovered from wastewater. This work presents the long term operation of a demo-scale pilot plant (7.8 m3) with a novel configuration named as mainstream SCEPPHAR (ShortCut Enhanced Phosphorus and polyhydroxyalkanoate (PHA) Recovery) and based on two sequencing batch reactors (R1-HET and R2-AUT). This is the first report of an implementation at demo scale and under relevant operational conditions of the simultaneous integration of shortcut nitrification, P recovery and production of sludge with a higher PHA content than conventional activated sludge. An operating period under full nitrification mode achieved successful removal efficiencies for total N, P and CODT (86 ± 12%, 93 ± 9% and 79 ± 6%). In the following period, nitrite shortcut (with undetectable activity of nitrite oxidising bacteria) was achieved by implementing automatic control of the aerobic phase length in R2-AUT using ammonium measurement and operating at a lower sludge retention time. Similar N, P and CODT removal efficiencies to the full nitrification period were obtained. P-recovery from the anaerobic supernatant of R1-HET was achieved in a separate precipitator by increasing pH and dosing MgCl2, recovering an average value of 45% of the P in the influent as struvite precipitate, with a peak up to 63%. These values are much higher than the typical values of sidestream P-recovery (12%). Regarding PHA, a percentage in the biomass in the range 6.9-9.2% (gPHA·g-1TSS) was obtained.

Keywords: recovery; removal; polyhydroxyalkanoate; wastewater treatment

Journal Title: Water research
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.