LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Complete nitrogen removal via simultaneous nitrification and denitrification by a novel phosphate accumulating Thauera sp. strain SND5.

Photo by mat_graphik from unsplash

Bacteria capable of simultaneous nitrification and denitrification (SND) and phosphate removal could eliminate the need for separate reactors to remove nutrients from wastewater and alleviate competition for carbon sources between… Click to show full abstract

Bacteria capable of simultaneous nitrification and denitrification (SND) and phosphate removal could eliminate the need for separate reactors to remove nutrients from wastewater and alleviate competition for carbon sources between different heterotrophs in wastewater treatment plants (WWTPs). Here we report a newly isolated Thauera sp. strain SND5, that removes nitrogen and phosphorus from wastewater via SND and denitrifying-phosphate accumulation, respectively, without accumulation of metabolic intermediates. Strain SND5 simultaneously removes ammonium, nitrite, and nitrate at an average rate of 2.85, 1.98, and 2.42 mg-N/L/h, respectively. Batch testing, detection of functional genes, nitrogenous gas detection and thermodynamic analysis suggested that nitrogen gas, with hydroxylamine produced as an intermediate, was the most likely end products of heterotrophic ammonium oxidation by strain SND5. The generated end products and intermediates suggest a novel nitrogen removal mechanism for heterotrophic ammonium oxidation in strain SND5 (NH4+→NH2OH→N2). Strain SND5 was also found to be a denitrifying phosphate-accumulating organism, capable of accumulating phosphate, producing and storing polyhydroxybutyrate (PHB) as an intracellular source of carbon while using nitrate/nitrite or oxygen as an electron acceptor during PHB catabolism. This study identifies a novel pathway by which simultaneous nitrogen and phosphorus removal occurs in WWTPs via a single microbe.

Keywords: nitrogen; strain snd5; removal; simultaneous nitrification; strain; phosphate

Journal Title: Water research
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.