LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Feasibility of methane bioconversion to methanol by acid-tolerant ammonia-oxidizing bacteria.

Photo by meguminachev from unsplash

Bioconversion of biogas to value-added liquids has received increasing attention over the years. However, many biological processes are restricted under acidic conditions owing to the excessive carbon dioxide (CO2, 30-40%… Click to show full abstract

Bioconversion of biogas to value-added liquids has received increasing attention over the years. However, many biological processes are restricted under acidic conditions owing to the excessive carbon dioxide (CO2, 30-40% v/v) in biogas. Here, using an enriched culture dominated by acid-tolerant ammonia-oxidizing bacteria (AOB) 'Candidatus Nitrosoglobus', this study examined the feasibility of producing methanol from methane in the CO2-acidified environment (i.e. pH of 5.0). Within the tested dissolved methane range (0.1-0.9 mM), methane oxidation by the acid-tolerant AOB culture followed first-order kinetics, with the same rate constant (i.e. 0.43 (L/(g VSS‧h)) between pH 7.0 and 5.0. The acidic methane oxidation showed robustness against high dissolved concentrations of CO2 (up to 4.06 mM) and hydrogen sulfide (H2S up to 0.11 mM), which led to a high methanol yield of about 30-40%. As such, the raw biogas containing toxic CO2 and H2S can directly serve for methanol production by this acid-tolerant AOB culture, economizing a conventionally costly biogas upgradation process. Afterwards, two batch reactors fed with methane and oxygen intermittently both obtained a final concentration of 1.5 mM CH3OH (equal to 72 mg chemical oxygen demand/L) in the liquid, suggesting it is a useful carbon source to enhance denitrification in wastewater treatment systems. In addition, ammonia availability was identified to be critical for a higher rate of this AOB-mediated methanol production. Overall, our results for the first time demonstrated the capability of a novel acid-tolerant AOB culture to oxidize methane, and also illustrated the technical feasibility to utilize raw biogas for methanol production at acidic conditions.

Keywords: methanol; methane; feasibility; acid tolerant; tolerant ammonia

Journal Title: Water research
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.