LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The multi-process reaction model and underlying mechanisms of 2,4,6-trichlorophenol removal in lab-scale biochar-microorganism augmented ZVI PRBs and field-scale PRBs performance.

Photo by _louisreed from unsplash

This work developed calcium alginate (CA) embedded zero-valent iron (ZVI@CA) and CA embedded biochar (BC) immobilized microorganism (BC&Cell@CA) gel beads as alternative to conventional Fe0 permeable reactive barriers for treating… Click to show full abstract

This work developed calcium alginate (CA) embedded zero-valent iron (ZVI@CA) and CA embedded biochar (BC) immobilized microorganism (BC&Cell@CA) gel beads as alternative to conventional Fe0 permeable reactive barriers for treating groundwater contaminated with 2,4,6-trichlorophenol (2,4,6-TCP). Lab-scale and field-scale biochar-microorganism augmented PRBs (Bio-PRBs) were constructed and tested. The underlying mechanisms were revealed by a multi-source data calibrated multi-process reaction model, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and high-throughput sequencing. Moreover, calibrated advection-dispersion (a) coupled with the two-site sorption (Kd) and chemical-biological multi-process reaction (λ) model were used for revealing 2,4,6-TCP transport behavior and optimizing Bio-PRBs. Compared to that in the ZVI@CA (0.004 h-1) system, the reaction rate (0.011 h-1) of 2,4,6-TCP increased by 175% in the combined chemical-biological batch system. Moreover, chemical-biological augmentation significantly improved the retardation effect of Bio-PRBs for 2,4,6-TCP. It came from that chemical-biological augmentation significantly decreased the dispersivity a (0.53 to 0.20 cm), and increased the distribution coefficient Kd (2.20 to 19.00 cm3 mg-1), the reaction rate λ (2.40 to 3.60 day-1), and the fraction (30% to 80%) of first-order kinetic sorption of 2,4,6-TCP in the lab-scale one-dimensional Bio-PRBs. Moreover, versatile functional bacteria Desulfitobacterium was crucial in the transformation of Fe (III) iron oxides. The diversity and richness of archaea in the reaction solution were improved by ZVI@CA gel beads addition. Furthermore, the field-scale reaction system was designed to remediate the chlorinated organic compounds and Benzene Toluene Ethylbenzene & Xylene contaminated groundwater in a pesticide factory site. The field test results demonstrated it is a promising technology to construct vertical reaction columns or horizontal Bio-PRBs for the efficient remediation of actually contaminated groundwater.

Keywords: field scale; lab scale; reaction; bio prbs; scale

Journal Title: Water research
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.