LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effective wave motion in periodic discontinua near spectral singularities at finite frequencies and wavenumbers

Photo from wikipedia

Abstract We consider the effective wave motion, at spectral singularities such as corners of the Brillouin zone and Dirac points, in periodic continua intercepted by compliant interfaces that pertain to… Click to show full abstract

Abstract We consider the effective wave motion, at spectral singularities such as corners of the Brillouin zone and Dirac points, in periodic continua intercepted by compliant interfaces that pertain to e.g. masonry and fractured materials. We assume the Bloch-wave form of the scalar wave equation (describing anti-plane shear waves) as a point of departure, and we seek an asymptotic expansion about a reference point in the wavenumber-frequency space – deploying wavenumber separation as the perturbation parameter. Using the concept of broken Sobolev spaces to cater for the presence of kinematic discontinuities, we next define the “mean” wave motion via inner product between the Bloch wave and an eigenfunction (at specified wavenumber and frequency) for the unit cell of periodicity. With such projection-expansion approach, we obtain an effective field equation, for an arbitrary dispersion branch, near apexes of “wavenumber quadrants” featured by the first Brillouin zone. For completeness, we investigate asymptotic configurations featuring both (a) isolated, (b) repeated, and (c) nearby eigenvalues. In the case of repeated eigenvalues, we find that the “mean” wave motion is governed by a system of wave equations and Dirac equations, whose size is given by the eigenvalue multiplicity, and whose structure is determined by the participating eigenfunctions, the affiliated cell functions, and the direction of wavenumber perturbation. One of these structures is shown to describe the so-called Dirac points – apexes of locally conical dispersion surfaces – that are relevant to the generation of topologically protected waves. In situations featuring clusters of tightly spaced eigenvalues, the effective model is found to entail a Dirac-like system of equations that generates “blunted” conical dispersion surfaces. We illustrate the analysis by numerical simulations for two periodic configurations in  R 2 that showcase the asymptotic developments in terms of (i) wave dispersion, (ii) forced wave motion, and (iii) frequency- and wavenumber-dependent phonon behavior.

Keywords: dispersion; effective wave; spectral singularities; wave motion; motion

Journal Title: Wave Motion
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.