LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

TiC–NiCr thermal spray coatings as an alternative to WC-CoCr and Cr3C2–NiCr

Photo from archive.org

Abstract TiC-based hardmetal coatings containing 25 or 40 vol% Ni-20 wt%Cr matrix (hereafter TiC–25NiCr and TiC–40NiCr) were obtained by High Velocity Oxygen-Fuel (HVOF) and High Velocity Air-Fuel (HVAF) spraying, starting from high-energy… Click to show full abstract

Abstract TiC-based hardmetal coatings containing 25 or 40 vol% Ni-20 wt%Cr matrix (hereafter TiC–25NiCr and TiC–40NiCr) were obtained by High Velocity Oxygen-Fuel (HVOF) and High Velocity Air-Fuel (HVAF) spraying, starting from high-energy ball milled feedstock powders. These coatings are intended as critical raw materials-free solutions against wear and corrosion. HVOF-sprayed coatings contain some more oxide inclusions than do HVAF ones, but, irrespective of the deposition conditions, TiC–40NiCr coatings are usually somewhat harder (800–900 HV0.3) than TiC–25NiCr ones. They also exhibit lower wear rates in ball-on-disc sliding tests against Al2O3 at room temperature. A hard asperity can indeed penetrate slightly deeper into TiC–25NiCr, as it deforms inelastically through microcracking. Bigger abrasive grooves are thus produced. The wear resistance of TiC–40NiCr coatings compares favourably to that of a Cr3C2-25% (NiCr) reference, and even approaches that of WC-10 wt%Co-4wt.%Cr. TiC–40NiCr coatings are also more corrosion resistant than both reference materials when tested by electrochemical polarization in a 3.5% NaCl solution. At 400 °C, to the contrary, TiC–25NiCr coatings exhibit better sliding wear resistance, whilst more severe abrasive grooving and adhesive tearing affect TiC–40NiCr samples. TiC–NiCr coatings are also unaffected by the transverse macro-cracking that was found to compromise the usefulness of WC-CoCr at 400 °C.

Keywords: cr3c2 nicr; cocr; tic nicr; tic 40nicr; tic 25nicr

Journal Title: Wear
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.