LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Intraoperative Neurophysiologic Monitoring for Adult Patients Undergoing Posterior Spinal Fusion.

Photo by sharonmccutcheon from unsplash

BACKGROUND Somatosensory evoked potentials (SSEPs) and motor evoked potentials (MEPs) are frequently used to monitor neurologic function during spinal deformity surgery. The sensitivity and specificity of intraoperative neurophysiologic monitoring (IONM)… Click to show full abstract

BACKGROUND Somatosensory evoked potentials (SSEPs) and motor evoked potentials (MEPs) are frequently used to monitor neurologic function during spinal deformity surgery. The sensitivity and specificity of intraoperative neurophysiologic monitoring (IONM) in patients undergoing posterior spinal fusion (PSF) is debatable. METHODS A retrospective review of all patients undergoing PSF with IONM from October 2008 to December 2012 was performed. Factors including sex, operative time, and spinal levels of posterior fusion were analyzed as risk factors for intraoperative alerts. RESULTS A total of 784 consecutive patients who underwent PSF with IONM without any baseline deficits were analyzed. Patients included 45% men (n = 356) and 55% women (n = 428), with a mean age of 56 years. The mean procedure time was 7 hours. Intraoperative alerts were noted for 3.3% (n = 26) of patients. In this cohort, the average number of levels involved per procedure was approximately 7, ranging from 1 to 16 levels. Of all the spinal levels, the cervicothoracic region had the highest incidence of intraoperative alerts (6 of 97 cervicothoracic cases, P = 0.06). Among these patients, age (P = 0.32), sex (P = 0.66), and procedure time (P = 0.63) were not predictive factors. Four out of 26 (15%) patients had neurologic deficits despite surgeon intervention after neuromonitoring alerts. CONCLUSIONS SSEP and MEP changes occurred in 3.3% of patients undergoing PSF, with the highest incidence at the cervicothoracic level. Twenty-three out of 26 patients with intraoperative neuromonitoring changes had improvements in IONM signals after interventions during surgery. Further studies using larger patient numbers may be useful in establishing the utility of neuromonitoring in PSF.

Keywords: intraoperative neurophysiologic; posterior spinal; patients undergoing; neurophysiologic monitoring; fusion; undergoing posterior

Journal Title: World neurosurgery
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.