LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Biomechanical Analysis of Bilateral Facet Joint Stabilization Using Bioderived Tendon for Posterior Cervical Spine Motion Reservation in Goats.

Photo by cassidykdickens from unsplash

OBJECTIVES To investigate the biomechanical properties of a novel stabilization method for posterior cervical motion preservation using bioderived freeze-dried tendon. METHODS Experiments were conducted both in vitro and in vivo. For the… Click to show full abstract

OBJECTIVES To investigate the biomechanical properties of a novel stabilization method for posterior cervical motion preservation using bioderived freeze-dried tendon. METHODS Experiments were conducted both in vitro and in vivo. For the in vitro group, 15 fresh-frozen goat spines (C1-C7) were randomly divided into 3 subgroups: intact (INT-vitro, n = 5), injury model (IM-vitro, n = 5), and bilateral facet joint stabilization (BFJS-vitro, n = 5) subgroups. For the in vivo group, 15 adult goats were randomly divided into 3 experimental subgroups: INT-vivo subgroup (n = 5), IM-vivo subgroup (n = 5), and BFJS-vivo subgroup (n = 5). Goats in the in vivo group were euthanized 12 weeks after surgery. Biomechanical tests were performed to evaluate range of motion. Histologic analysis was conducted to evaluate survival and reactions associated with the bioderived tendon. RESULTS Compared with the INT-vitro and INT-vivo subgroups, the flexion of IM-vitro and IM-vivo subgroups increased significantly, respectively (P < 0.05). The flexion of the BFJS-vitro and BFJS-vivo subgroups was significantly smaller than in the IM-vitro and IM-vivo subgroups, respectively (P < 0.05). Significant differences between the BFJS-vitro and BFJS-vivo subgroups were observed in flexion, lateral bending, and rotation (P < 0.05). Histologic evaluation demonstrated that fibers arranged regularly and stained homogeneously. New vessels in growth indicated that the bioderived tendon was survival and processed good regeneration. CONCLUSIONS Bilateral facet joint stabilization can significantly limit excessive flexion motion and maintain adequate stability. Furthermore, the preservation of extension motions without limiting lateral bending and rotation ideally simulates the features of the posterior ligamentous complex. This preserves the dynamic stability of the lower cervical spine.

Keywords: motion; stabilization; bioderived tendon; bilateral facet; facet joint; joint stabilization

Journal Title: World neurosurgery
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.