LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pharmaceutical Amorphous Nanoparticles.

Photo by schluditsch from unsplash

There has been a tremendous revolution in the field of nanotechnology, resulting in the advent of novel drug delivery systems known as nanomedicines for diagnosis and therapy. One of the… Click to show full abstract

There has been a tremendous revolution in the field of nanotechnology, resulting in the advent of novel drug delivery systems known as nanomedicines for diagnosis and therapy. One of the applications is nanoparticulate drug delivery systems which are used to improve the solubility and oral bioavailability of poorly soluble compounds. This is particularly important because most of the molecules emerging from the drug discovery pipeline in recent years have problems associated with solubility and bioavailability. There has been considerable focus on nanocrystalline materials; however, amorphous nanoparticles have the advantage of synergistic mechanisms of enhancing dissolution rates (due to their nanosize range and amorphous nature) as well as increasing supersaturation levels (due to their amorphous nature). An example of this technology is NanomorphTM, developed by Soliqus/Abbott, wherein the nanosize drug particles are precipitated in an amorphous form in order to enhance the dissolution rate. This along with other simple and easily scalable manufacturing techniques for amorphous nanoparticles is described. In addition, the mechanisms of formation of amorphous nanoparticles and several physicochemical properties associated with amorphous nanoparticles are critically reviewed.

Keywords: drug; nanotechnology; pharmaceutical amorphous; amorphous nanoparticles

Journal Title: Journal of pharmaceutical sciences
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.