LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Impact of Superdisintegrants and Film Thickness on Disintegration Time of Strip Films Loaded With Poorly Water-Soluble Drug Microparticles.

Photo from wikipedia

Although strip films are a promising platform for delivery of poorly water-soluble drug particles via slurry casting, the effect of critical material attributes, for example, superdisintegrants (SDIs) on critical quality… Click to show full abstract

Although strip films are a promising platform for delivery of poorly water-soluble drug particles via slurry casting, the effect of critical material attributes, for example, superdisintegrants (SDIs) on critical quality attributes, including film disintegration time (DT), remains underexplored. A 2-level factorial design is considered to examine the impact of the SDI type (sodium starch glycolate and croscarmellose sodium), their amount, and film thickness. SDIs were used with hydroxypropyl methylcellulose (E15LV) and glycerin solutions along with viscosity matching. Fenofibrate, a model poorly water-soluble drug, was micronized and surface modified via fluid energy milling. Significant decreases in film DT, measured using 3 different methods, were observed due to the addition of SDIs. Percentage reduction in DT was a strong function of SDI amount, and thinner films disintegrated faster. Films with either higher SDI concentrations (>9%) or films under 80 μm, exhibited fast DT (<180 s, European Pharmacopeia). All thin films (50-60 μm) exhibited immediate release (>80% in 10 min). All films achieved good content uniformity, except for those with the lowest amount of SDI, attributed to insufficient viscosity and thickness nonuniformity due to the SDI. Finally, all films achieved adequate mechanical properties, notwithstanding minor negative impact of SDIs.

Keywords: water soluble; poorly water; soluble drug; film

Journal Title: Journal of pharmaceutical sciences
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.