LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Proposed Complete Methodology to Predict Gravity Flow Obstruction of Pharmaceutical Powders in Drug Product Manufacturing.

Photo from wikipedia

We present herein a comprehensive methodology to evaluate the risks involved in gravity-driven flow of pharmaceutical powders, including mass flow/funnel flow pattern, arch formation under active stress state (initial discharging)… Click to show full abstract

We present herein a comprehensive methodology to evaluate the risks involved in gravity-driven flow of pharmaceutical powders, including mass flow/funnel flow pattern, arch formation under active stress state (initial discharging) and passive stress state (following initial discharging), and rathole formation. Built on original theories underpinning the hopper design procedure, the methodology was modified to accommodate practices of pharmaceutical powder handling. All data required are generated from conventional ring shear tester. We applied the methodology to evaluate the powder flow risks during drug product manufacturing campaigns, where two powder blends with distinct flow behavior were discharged from a 200-L bin. The predicted results are in agreement with experiments where visual observations were possible, including the flow pattern, arch formation under active stress state, and rathole formation. One notable discovery is that pharmaceutical powders exhibit high risk of arch formation under active stress state, because of the exceeding major principal stress than the passive state. This phenomenon has been so far overlooked and the existing flow function-based classification cannot capture this risk. We propose, through this methodology, that reliable powder flow assessment should consider factors preventing flow (i.e., flow function), as well as factors facilitating flow (i.e., external stress).

Keywords: state; methodology; formation; stress; pharmaceutical powders; flow

Journal Title: Journal of pharmaceutical sciences
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.