LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Physiologically Based Pharmacokinetic Modeling of Nanoparticles.

Photo from wikipedia

Nanoparticles are frequently designed to improve the pharmacokinetics profiles and tissue distribution of small molecules to prolong their systemic circulation, target specific tissue, or widen the therapeutic window. The multifunctionality… Click to show full abstract

Nanoparticles are frequently designed to improve the pharmacokinetics profiles and tissue distribution of small molecules to prolong their systemic circulation, target specific tissue, or widen the therapeutic window. The multifunctionality of nanoparticles is frequently presented as an advantage but also results in distinct and complicated in vivo disposition properties compared with a conventional formulation of the same molecules. Physiologically based pharmacokinetic (PBPK) modeling has been a useful tool in characterizing and predicting the systemic disposition, target exposure, and efficacy and toxicity of various types of drugs when coupled with pharmacodynamic modeling. Here we review the unique disposition characteristics of nanoparticles, assess how PBPK modeling takes into account the unique disposition properties of nanoparticles, and comment on the applications and challenges of PBPK modeling in characterizing and predicting the disposition and biological effects of nanoparticles.

Keywords: pharmacokinetic modeling; disposition; based pharmacokinetic; pbpk modeling; physiologically based

Journal Title: Journal of pharmaceutical sciences
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.