LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Use of a Microfluidic Device to Encapsulate a Poorly Water-Soluble Drug CoQ10 in Lipid Nanoparticles and an Attempt to Regulate Intracellular Trafficking to Reach Mitochondria.

Photo by a2eorigins from unsplash

A number of drugs that are currently on the market, as well as new candidates for drugs, are poorly water soluble. Because of this, a need exists to develop drug… Click to show full abstract

A number of drugs that are currently on the market, as well as new candidates for drugs, are poorly water soluble. Because of this, a need exists to develop drug formulations that will permit the expanded use of such drugs. The use of liposomes and lipid nanoparticles for drug delivery has attracted attention as a technique for solubilizing molecules that are poorly water soluble, but this technique faces serious scale-up risks. In this study, we report on attempts to encapsulate Coenzyme Q10 (CoQ10) as a model of a poorly water-soluble drug in an MITO-Porter, a liposome for mitochondrial delivery using a microfluidic device (a CoQ10-MITO-Porter [μ]). The physical properties of the CoQ10-MITO-Porter [μ] including homogeneity, size, and preparation volume were compared with those for a CoQ10-MITO-Porter prepared by the ethanol dilution method (a CoQ10-MITO-Porter [ED]). In the case where a microfluidic device was used, a small-sized CoQ10-MITO-Porter was formed homogeneously, and it was possible to prepare it on a large scale. Intracellular observations using HeLa cells showed that the CoQ10-MITO-Porter [μ] was efficiently internalized by cells to reach mitochondria. These results indicate that the CoQ10-MITO-Porter [μ] represents a potential candidate for use in mitochondrial nanomedicine.

Keywords: mito porter; poorly water; coq10 mito; porter

Journal Title: Journal of pharmaceutical sciences
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.