LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

3D Printing and Dissolution Testing of Novel Capsule Shells for Use in Delivering Acetaminophen.

Photo from wikipedia

Individualized drug delivery improves drug efficacy and safety for patients. To implement individualized drug delivery, patient-specific tailored dosages produced on a small scale are needed. However, current pharmaceutical manufacturing is… Click to show full abstract

Individualized drug delivery improves drug efficacy and safety for patients. To implement individualized drug delivery, patient-specific tailored dosages produced on a small scale are needed. However, current pharmaceutical manufacturing is not suitable for personalized dosage forms. Although convenient to deliver various drugs, current gelatin capsules using animal collagen protein have many limitations, such as releasing drugs too fast and incompatibility with some diets. In contrast, 3D printed capsules have great potential to advance individualized treatments. In this paper, we 3D printed and tested non-animal-based capsule shells for the delivery of acetaminophen. Capsule shells were composed of poly(vinyl) alcohol (PVA) and PVA blends with 5-25% hydroxypropyl methylcellulose (HPMC). Dissolution of acetaminophen when delivered in these capsule shells was tested using a USP dissolution test apparatus 2 (paddle type) at gastric pH. The novel shells were compared to each other and to commercially available hard gelatin capsules. Dissolution results show that acetaminophen when delivered in 3D printed capsules was slower than when delivered by gelatin capsules. Increasing the percentage of HPMC in the blend further delayed its release and dissolution. This delay could potentially increase the efficacy and reduce the side effects of acetaminophen. These shells also offer a non-animal-based alternative to gelatin capsules. Furthermore, 3D printing of capsule shells with specific polymer blends may be useful for patient-specific therapy in compounding pharmacies across the country.

Keywords: printing dissolution; capsule; capsule shells; gelatin capsules

Journal Title: Journal of pharmaceutical sciences
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.