ABSTRACT Development of acquired resistance to EGFR‐TKI therapy continues to be a serious clinical problem in Lung adenocarcinoma management. Peroxisome proliferator‐activated receptor gamma (PPAR&ggr;) agonists demonstrate anti‐tumor activity likely via… Click to show full abstract
ABSTRACT Development of acquired resistance to EGFR‐TKI therapy continues to be a serious clinical problem in Lung adenocarcinoma management. Peroxisome proliferator‐activated receptor gamma (PPAR&ggr;) agonists demonstrate anti‐tumor activity likely via transactivating genes that regulate cell proliferation, differentiation and apoptosis. Efatutazone, a novel later generation PPAR&ggr; agonist, selectively activates PPAR&ggr; target genes and has antiproliferative effects in a range of malignancies. However, the exact function and molecular mechanism of PPAR&ggr; agonists efatutazone in EGFR‐TKI gefitinib‐resistance of Lung adenocarcinoma has not been determined. In this study, we studied the development of acquired resistance to an EGFR‐TKI gefitinib in lung adenocarcinoma cells and investigated the antiproliferative effects of efatutazone in the acquired resistant cells. The treatment of gefitinib‐resistant cells with efatutazone reduced the growth of gefitinib‐resistant cells in a dose‐ and time‐dependent manner, and facilitated the anti‐proliferative effects of gefitinib. Mechanistic investigations suggested that efatutazone acted by upregulating protein expression of PPAR&ggr;, phosphatase and tensin homolog (PTEN), inactivating the Akt pathway, followed by dephosphorylation of p21Cip1 at Thr145 without affecting the transcriptional levels. Our results suggested that efatutazone, alone or in combination with gefitinib, might offer therapeutic effects in lung adenocarcinoma. HIGHLIGHTSThe low expression of PPARG predicts poor overall survival for patients with lung adenocarcinoma.Treatment with efatutazone and gefitinib produced a synergistic effect on inhibiting proliferation of EGFR‐TKI‐resistant cells.The PPAR&ggr;/PTEN/Akt/p21 signaling pathway might be involved in above synergistic effect.Efatutazone is a potential therapeutic agent for the NSCLC patients who develop acquired resistance to EGFRT‐KI.
               
Click one of the above tabs to view related content.