LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Matrix stiffness regulates the differentiation of tendon‐derived stem cells through FAK‐ERK1/2 activation

Photo by neonbrand from unsplash

&NA; Tendon derived stem cells (TDSCs) were vital in tendon homeostasis. Nevertheless, the regulation of TDSCs differentiation in tendinopathy is unclear. Matrix stiffness modulated stem cells differentiation, and matrix stiffness… Click to show full abstract

&NA; Tendon derived stem cells (TDSCs) were vital in tendon homeostasis. Nevertheless, the regulation of TDSCs differentiation in tendinopathy is unclear. Matrix stiffness modulated stem cells differentiation, and matrix stiffness of tendinopathic tissues decreased significantly. In order to clarify the role of matrix stiffness in TDSCs differentiation, they were cultured on the gelatin hydrogels with the stiffness from 2.34 ± 1.48 kPa to 24.09 ± 14.03 kPa. The effect of matrix stiffness on TDSCs proliferation and differentiation were investigated with CCK8 assay, immunofluorescences, real time PCR and western blot. It was found the proliferation of TDSCs increased and more stress fibers formed with increasing matrix stiffness. The differentiation of TDSCs into tenogenic, chondrogenic, and osteogenic lineages were inhibited on stiff hydrogel evidenced by reduced expression of tenocyte markers THBS4, TNMD, SCX, chondrocyte marker COL2, and osteocyte markers Runx2, Osterix, and ALP. Furthermore, the phosphorylation of FAK and ERK1/2 were enhanced when TDSCs grew on stiff hydrogel. After FAK or ERK1/2 was inhibited, the effect of matrix stiffness on differentiation of TDSCs was inhibited as well. The above results indicated matrix stiffness modulated the proliferation and differentiation of TDSCs, and the regulation effect could correlate to the activation of FAK or ERK1/2. Graphical abstract Figure. No caption available. HighlightsTDSC proliferation was enhanced with the increasing matrix stiffness.More F‐actin stress fibers formed in TDSCs while matrix stiffness increased.Higher matrix stiffness inhibited the differentiation of TDSCs.FAK or ERK1/2 activation was involved in the regulatory effect.

Keywords: matrix stiffness; stiffness; tdscs; differentiation; fak erk1

Journal Title: Experimental Cell Research
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.