LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Epoxyeicosatrienoic acid prevents maladaptive remodeling in pressure overload by targeting calcineurin/NFAT and Smad-7.

Photo from wikipedia

BACKGROUND Emerging evidence demonstrates that epoxyeicosatrienoic acids (EETs) as important active eicosanoids that regulate cardiovascular homeostasis, but the mechanisms underlying its favorable anti-hypertrophic benefits in overpressure model remain obscure. METHODS… Click to show full abstract

BACKGROUND Emerging evidence demonstrates that epoxyeicosatrienoic acids (EETs) as important active eicosanoids that regulate cardiovascular homeostasis, but the mechanisms underlying its favorable anti-hypertrophic benefits in overpressure model remain obscure. METHODS AND RESULTS Four weeks after transverse aortic constriction (TAC), TAC mice developed maladaptive cardiac hypertrophy and consequent cardiac failure. Conversely, a cardiotropic adeno-associated viral vector (AAV9) encoding CYP2J2 prevented transverse aortic constriction-induced cardiac hypertrophy with preserved ejection fraction. EET also conferred protection against phenylephrine-induced hypertrophy in H9c2 cardiomyoblasts. Further investigations indicate CYP2J2/EET exerts protection against cardiac hypertrophy through opposing the increase of intracellular Ca2+ level and Ca2+-mediated calcineurin/NFATc3 signaling. Meanwhile, extended myocardial fibrosis in TAC mice was also effectively abolished with the administration of AAV9-2J2. Intriguingly, TAC mice display activated TGF-β/Samd-3 signaling with decreased Smad-7 expression, whereas AAV9-2J2 attenuated the phosphorylation of Smad-3 without altering TGF-β expression, whilst preservation of Smad-7. Subsequently, the differentiation of cardiac fibroblasts into myofibroblasts in the presence of TGF-β1 stimulation was significantly disrupted with EET treatment, accompanied by declined Smad-3 activation and collagen production, whereas inhibition of Smad-7 with SiRNA Smad-7 substantially abrogated these effects of EET on cardiac fibroblasts. CONCLUSIONS EET has synergistic actions on cardiomyocytes and cardiac fibroblasts, preventing cardiac hypertrophy through inhibition of Ca2+-mediated calcineurin/NFATc3 signaling cascades, and ameliorating myocardial fibrosis dependent on Smad-7. This work further extends the potential mechanisms of EET, providing a novel therapeutic approach for the treatment of pathological remodeling and heart failure.

Keywords: cardiac hypertrophy; smad; hypertrophy; cardiac fibroblasts; epoxyeicosatrienoic acid; tac mice

Journal Title: Experimental cell research
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.