DNA methylation alters the expression of certain genes without any alteration to the DNA sequence and is a dynamic process during normal hematopoietic differentiation. As an epigenetic regulator, methyl-CpG-binding domain… Click to show full abstract
DNA methylation alters the expression of certain genes without any alteration to the DNA sequence and is a dynamic process during normal hematopoietic differentiation. As an epigenetic regulator, methyl-CpG-binding domain protein 2 (MBD2) is an important member of the MBD protein family and is acknowledged as a "reader" of DNA methylation. We used a mouse model to study the effects of MBD2 on the early development of T cells. Here, we found that MBD2 deficiency led to retardation of T cell differentiation at the DN3 stage. Meanwhile, decreased proliferative capacity and increased apoptosis were detected in Mbd2-/- DN thymocytes. Furthermore, we found the WNT pathway was significantly down-regulated in Mbd2-/- DN thymocytes: DKK1 (Dickkopf-1) expression was significantly increased, while TCF7 (transcription factor 7) and c-MYC were down-regulated. Thus, these findings established that MBD2 acted as a dominant regulator to imprint DN T cell development via the WNT pathway.
               
Click one of the above tabs to view related content.