LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The NRG3/ERBB4 signaling cascade as a novel therapeutic target for canine glioma.

Photo from wikipedia

Canine glioma is a common brain tumor with poor prognosis despite surgery and/or radiation therapy. Therefore, newer and more effective treatment modalities are needed. Neuregulin 3 (NRG3) has known to… Click to show full abstract

Canine glioma is a common brain tumor with poor prognosis despite surgery and/or radiation therapy. Therefore, newer and more effective treatment modalities are needed. Neuregulin 3 (NRG3) has known to be a ligand of ERBB4. This study aimed to investigate the usefulness of the NRG3/ERBB4 signaling cascade as a novel therapeutic target in canine glioma. We found out that microRNA (miR)-190a was downregulated in canine brain tumor tissues, including glioma and meningioma. miR-190a directly targeted NRG3 and inhibited the growth of canine glioma cells. The level of p-Akt, which is a downstream target of ERBB4 signaling, was decreased by transfection with miR-190a. NRG3 silencing also suppressed cell growth and decreased the levels of p-Akt and p-ERK1/2, and NRG3 overexpression exhibited opposed effects in canine glioma J3T-1 cells. The mRNA level of erbb4 was significantly upregulated in glioma tissues compared with that in normal brain tissues and meningioma tissues. Furthermore, compared with gefitinib and lapatinib, afatinib exerted a greater inhibitory effect on the growth of canine glioma cells. In conclusion, NRG3/ERBB4 signaling is negatively regulated by miR-190a and contributes to the growth of canine glioma cells, indicating that it may be a promising therapeutic target in canine glioma.

Keywords: glioma; canine glioma; target; nrg3 erbb4; erbb4 signaling

Journal Title: Experimental cell research
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.