A neuromodulatory role for glutamate has been reported for magnocellular neuroendocrine cells in mammalian hypothalamus. We examined the potential role of glutamate as a local intercellular messenger in the neuroendocrine… Click to show full abstract
A neuromodulatory role for glutamate has been reported for magnocellular neuroendocrine cells in mammalian hypothalamus. We examined the potential role of glutamate as a local intercellular messenger in the neuroendocrine Dahlgren cell population of the caudal neurosecretory system (CNSS) in the euryhaline flounder Paralichthys olivaceus. In pharmacological experiments in vitro, glutamate (Glu) caused an increase in electrical activity of Dahlgren cells, recruitment of previously silent cells, together with a greater proportion of cells showing phasic (irregular) activity. The glutamate substrate, glutamine (Gln), led to increased firing frequency, cell recruitment and enhanced bursting activity. The glutamate effect was not blocked by the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801, or the GluR1/GluR3 (AMPA) receptor antagonist IEm1795-2HBr, but was blocked by the broad-spectrum α-amino-3-hydroxy- 5- methyl-4-isoxazo-lepropionic acid (AMPA) receptor antagonist ZK200775. Our transcriptome sequencing study revealed three AMPA receptor (GluR1, GluR2 and GluR3) in the olive flounder CNSS. Quantitative RT-PCR revealed that GluR2 receptor mRNA expression was significant increased following dose-dependent superfusion with glutamate in the CNSS. GluR1 and GluR3 receptor mRNA expression were decreased following superfusion with glutamate. L-type Ca2+ channel mRNA expression had a significant dose-dependent decrease following superfusion with glutamate, compared to the control. In the salinity challenge experiment, acute transfer from SW to FW, GluR2 receptor mRNA expression was significantly higher than the control at 2 h. These findings suggest that GluR2 is one of the mechanisms which can medicate glutamate action within the CNSS, enhancing electrical activity and hence secretory output.
               
Click one of the above tabs to view related content.