LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Suitability of hybrid mackerel (Scomber australasicus × S. japonicus) with germ cell-less sterile gonads as a recipient for transplantation of bluefin tuna germ cells.

Photo from wikipedia

We aim to establish a small-bodied surrogate broodstock, such as mackerel, which produces functional bluefin tuna gametes by spermatogonial transplantation. When reproductively fertile fish are used as recipients, endogenous gametogenesis… Click to show full abstract

We aim to establish a small-bodied surrogate broodstock, such as mackerel, which produces functional bluefin tuna gametes by spermatogonial transplantation. When reproductively fertile fish are used as recipients, endogenous gametogenesis outcompetes donor-derived gametogenesis, and recipient fish predominantly produce their gametes. In this study, we assessed fertility of hybrid mackerel, Scomber australasicus × S. japonicus, and its suitability as a recipient for transplantation of bluefin tuna germ cells. Hybrid mackerel were produced by artificially inseminating S. australasicus eggs with S. japonicus spermatozoa. Cellular DNA content and PCR analyses revealed that F1 offspring were diploid carrying both paternal and maternal genomes. Surprisingly, histological observations found no germ cells in hybrid mackerel gonads at 120 days post-hatch (dph), although they were present in the gonad of 30- and 60-dph hybrid mackerel. The frequency of germ cell-less fish was 100% at 120-dph, 63.1% at 1-year-old, and 81.8% at 2-year-old. We also confirmed a lack of expression of germ cell marker (DEAD-box helicase 4, ddx4) in the germ cell-less gonads of hybrid mackerel. By contrast, expression of Sertoli cell marker (gonadal soma-derived growth factor, gsdf) and of Leydig cell marker (steroid 11-beta-hydroxlase, cyp11b1) were clearly detected in hybrid mackerel gonads. Together these results showed that most of the hybrid gonads were germ cell-less sterile, but still possessed supporting cells and steroidogenic cells, both of which are indispensable for nursing donor-derived germ cells. To determine whether hybrid gonads could attract and incorporate donor bluefin tuna germ cells, testicular cells labeled with PKH26 fluorescent dye were intraperitoneally transplanted. Fluorescence observation of hybrid recipients at 14 days post-transplantation revealed that donor cells had been incorporated into the recipient's gonads. This suggests that hybrid mackerel show significant promise for use as a recipient to produce bluefin tuna gametes.

Keywords: bluefin tuna; germ cells; germ; germ cell; hybrid mackerel

Journal Title: General and comparative endocrinology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.