Recombination spot identification plays an important role in revealing genome evolution and developing DNA function study. Although some computational methods have been proposed, extracting discriminatory information embedded in DNA properties… Click to show full abstract
Recombination spot identification plays an important role in revealing genome evolution and developing DNA function study. Although some computational methods have been proposed, extracting discriminatory information embedded in DNA properties has not received enough attention. The DNA properties include dinucleotide flexibility, structure and thermodynamic parameter, which are significant for genome evolution research. To explore the potential effect of DNA properties, a novel feature extraction method, called iRSpot-PDI, is proposed. A wrapper feature selection method with the best first search is used to identify the best feature set. To verify the effectiveness of the proposed method, support vector machine is employed on the obtained features. Prediction results are reported on two benchmark datasets. Compared with the recently reported methods, iRSpot-PDI achieves the highest values of individual specificity, Matthew's correlation coefficient and overall accuracy. The experimental results confirm that iRSpot-PDI is effective for accurate identification of recombination spots. The datasets can be downloaded from the following URL: http://stxy.neuq.edu.cn/info/1095/1157.htm.
               
Click one of the above tabs to view related content.