LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Identification of aberrantly expressed circular RNAs in hyperlipidemia-induced retinal vascular dysfunction in mice.

Photo from wikipedia

Hyperlipidemia-induced retinal vascular dysfunction is a complex pathological process. circRNAs are important regulators of biological processes and disease progression. However, the expression pattern of circRNAs in hyperlipidemia-induced retinal vascular dysfunction… Click to show full abstract

Hyperlipidemia-induced retinal vascular dysfunction is a complex pathological process. circRNAs are important regulators of biological processes and disease progression. However, the expression pattern of circRNAs in hyperlipidemia-induced retinal vascular dysfunction remains unclear. Herein, we used a murine model of hyperlipidemia and identified 317 differentially expressed circRNAs between hyperlipidemic retinas and normolipidemic retinas by circRNA microarrays. GO analysis indicated that the host genes of dysregulated circRNAs were targeted to cell differentiation (ontology: biological process), cytoplasm (ontology: cellular component), and protein binding (ontology: molecular function). Pathway analysis revealed that circRNAs-mediated network was mostly enriched in focal adhesion signaling. Notably, circLDB1 was significantly up-regulated in the serum of coronary artery disease patients and aqueous humor of age-related macular degeneration patients. circLDB1 regulated endothelial cell viability, proliferation, and apoptosis in vitro. Thus, circRNAs are the promising targets for the prediction and diagnosis of hyperlipidemia-induced vascular diseases.

Keywords: retinal vascular; ontology; induced retinal; hyperlipidemia; hyperlipidemia induced; vascular dysfunction

Journal Title: Genomics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.